HOGAN & HARTSON L.L.P.

ARI Q. FITZGERALD

DIRECT DIAL (202) 637-5423 COLUMBIA SQUARE
555 THIRTEENTH STREET, N.W.
WASHINGTON, DC 20004-1109
TEL (202) 637-5600
FAX (202) 637-5910
WWW.HHLAW.COM

October 27, 2005

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 445 Twelfth Street, S.W. Washington, D.C. 20554

> Re: WT Docket No. 01-90; ET Docket No. 98-95 Notification of *Ex Parte* Meeting

Dear Ms. Dortch:

Pursuant to Section 1.1206(b) of the Commission's rules, I am writing on behalf of the Alliance of Automobile Manufacturers (the "Alliance") to notify you of an *ex parte* meeting that occurred on October 27, 2005 between Alliance representatives and Commission staff. Participating in the meeting on behalf of the Alliance were: Bob Laing and Bill Ball, General Motors; Daniel Selke, Mercedes-Benz USA (on behalf of DaimlerChrysler); Michael Shulman and Farid Ahmed-Zaid, Ford Motor Company; Bob Barlow, Toyota Motor North America; Nancy Bell, Attorney, Alliance; and the undersigned, Counsel to the Alliance. The Alliance representatives met with Michael Wilhelm, Chief of the Wireless Bureau's Public Safety & Critical Infrastructure Division, and Gregory Intoccia and Timothy Maguire of the Division staff.

During the meeting, the Alliance representatives circulated and reviewed the attached presentation and emphasized why the Commission should designate Channel 172 of the Dedicated Short Range Communications ("DSRC") service for high-availability, low-latency safety communications.

HOGAN & HARTSON L.L.P.

Ms. Marlene H. Dortch October 28, 2005 Page 2

I am filing this notice electronically in the above-referenced docket. In addition, I am sending one copy of this notice to each of the FCC representatives listed below.

Respectfully submitted,

/s/ Ari Q. Fitzgerald

Ari Q. Fitzgerald Counsel to the Alliance of Automobile Manufacturers

Enclosure

cc: Michael Wilhelm

Gregory Intoccia Timothy Maguire

Dedicated Short Range Communications (DSRC)

ET Docket 98-95; WT Docket 01-90

Alliance of Automobile Manufacturers

Presentation to the FCC October 27, 2005

Alliance Members

BMW Group

M General Motors

TOYOTA

Background

Alliance Members:

- Account for over 90% of vehicles sold in the US.
- Employ approximately 600,000 workers at more than 250 facilities in 35 states

DSRC:

- Will enable first vehicle-to-vehicle interactive safety applications.
- Provides fundamental building block for future active safety applications
- Specific requirements for active safety applications are under active development.

DSRC for Safety Projects

- Vehicle Safety Communication Project (VSC): Two and half year cooperative program between BMW, DaimlerChrysler, Ford, GM, Nissan, Toyota, VW, and USDOT (completed Dec. 2004)
 - Facilitated the advancement of vehicle safety through communication technologies.
 - Identified and evaluated the safety benefits of vehicle safety applications enabled/enhanced by vehicle-tovehicle communications.
 - Assessed communication requirements, including vehicle-to-vehicle and vehicle-to-infrastructure modes.
 - Contributed to DSRC standards and ensured they effectively support safety.
- **Emergency Electronic Brake Lights (EEBL) Prototyping:** OEM internally funded effort started in June 2004. EEBL will provide the driver of a following vehicle with early notification of a lead vehicle braking hard. This will be especially effective when the driver's visibility is limited by environmental conditions (e.g., fog, rain, snow) or by objects (e.g., terrain, obstacles, other vehicles) in the driver's field of vision. **(Feb 2006)**
- Cooperative Intersection Collision Avoidance System (CICAS): This DSRC-based Project is being planned by USDOT (FHWA) to:
 - Develop and demonstrate cooperative intersection collision avoidance systems
 - Assess the value and acceptance of cooperative collision avoidance systems
 - Develop and provide tools to support industry deployments

Phase 1 – System Design (Dec. 2007); Phase 2 – Field Testing (Dec 2009)

• Vehicle-To-Vehicle Communication-Based Safety Applications: Project being planned by USDOT (NHTSA) as a next project to VSC that will prototype and evaluate vehicle-to-vehicle DSRC-based safety applications, including pre-crash countermeasures such as mitigation by braking, truck-car crash compatibility, etc. (in the planning stage)

Expected Results & Timing from Current Research

DSRC-based safety applications prototyping will help:

- Establish interoperability of vehicle-to-vehicle safety communications among various OEM vehicles
- Establish & validate communication architecture requirements for vehicle-to-vehicle and vehicle-to-infrastructure safety applications, including OEM standardized usage of Channel 172 for safety applications such as collision warning, mitigation and pre-crash countermeasures.

New research data expected to confirm the need for Channel 172 for vehicle-to-vehicle safety applications is projected to be available within the next 18 - 24 months timeframe.

Safety Applications Enabled by DSRC

Communications Between Vehicle and Infrastructure

- Blind Merge Warning
- Curve Speed Warning
- Emergency Vehicle Signal Preemption
- Highway/Rail Collision Warning
- Intersection Collision Warning
- In Vehicle Amber Alert
- In-Vehicle Signage
- Just-In-Time Repair Notification
- Left Turn Assistant
- Low Bridge Warning
- Low Parking Structure Warning
- Pedestrian Crossing Information at Intersection
- Road Condition Warning
- Safety Recall Notice
- SOS Services
- Stop Sign Movement Assistance
- Stop Sign Violation Warning
- Traffic Signal Violation Warning
- Work Zone Warning

Communications Between Vehicles

- Approaching Emergency Vehicle Warning
- Blind Spot Warning
- Cooperative Adaptive Cruise Control
- Cooperative Collision Warning
- Cooperative Forward Collision Warning
- Cooperative Vehicle-Highway Automation System
- Emergency Electronic Brake Lights
- Highway Merge Assistant
- Lane Change Warning
- Post-Crash Warning
- Pre-Crash Sensing
- Vehicle-Based Road Condition Warning
- Vehicle-to-Vehicle Road Feature Notification
- Visibility Enhancer
- Wrong Way Driver Warning

Ref: Vehicle Safety Communications Project January 7, 2005 Final Report – DTFH61-01-X-0001

Note: The applications with the highest estimated potential safety benefits are highlighted in bold lettering

Mobility and Convenience/Productivity Applications Enabled by DSRC

wide range of other applications that may make use of DSRC on a lower-priority basis in real time. Below are some examples of such applications In addition to the safety applications that could be enabled by DSRC, there are a

- Probe data for mobility (road authority use)
- Traffic/weather information
- Traffic/incident management
- Public fleet management
- Probe-based map building
- Telediagnostics
- Remote reprogramming
- Recall notification

- Service alerts
- Electronic access/payments
- Parking location assistance
- Fleet management
- Commercial vehicle services
- Logistics management (just-intime delivery)
- Information/entertainment downloads

V-V Common Safety Message Set

- The preliminary SAE common vehicle-to-vehicle DSRC safety message set includes:
 - Longitude
 - Latitude
 - Height
 - Time
 - Heading Angle
 - Speed
 - Lateral Acceleration
 - Longitudinal Acceleration
 - Yaw Rate

- Throttle Position
- Brake Applied Status
- Brake Applied Pressure
- Steering Wheel Angle
- Headlight Status
- Turn Signal Status
- Traction Control State
- Anti-Lock Brake State
- Vehicle Length / Width
- Vehicle type/ weight in pre-crash message set

Proceeding Background

ET Docket 98-95; WT Docket 01-90

- 5.850-5.925 GHz band allocated to DSRC in Dec. 1999
 - DSRC cited as key element in improving safety of nation's highways (FCC 99-305, ¶ 19)
- Service rules Report & Order adopted Dec. 2004 (FCC 03-324)
 - Noted that DSRC is key to achieving DOT's #1 priority of reducing highway fatalities that claim 43,000 deaths annually (¶ 2)
 - Recognized that timeliness and reliability are essential for crash avoidance applications; agreed that non-safety uses would be inappropriate if use resulted in a degradation of safety applications (¶ 15)
 - Nevertheless determined it "premature" to reserve service channels for specific applications; permitted safety/non-safety sharing throughout the band, with channel assignments for each communications request left to be determined by the priority levels of the Control Channel protocol. (¶ 29)
 - Recognized possible need to revisit the channel reservation issue in the future, given early stage of DSRC design (¶ 29)

Petitions for Reconsideration

ARINC and ITS America filed Petitions for Reconsideration in September 2004

- ARINC, supported by DOT contract, filed petition in its role as chair of the ASTM E17.51 DSRC Standards Writing Group
- Both petitions requested that Channel 172 be designated for highavailability, low-latency vehicle-to-vehicle safety communications, necessary to ensure accident avoidance and mitigation safety goals
- Supportive comments filed by the Alliance, Sirit Technologies, Raytheon, TransCore, and MarkIV IVHS.
- No oppositions to requests were filed.

Motivation for Petitions

- Concern that some safety applications require very high speed, very reliable and very low latency communications (i.e., Pre-Crash Sensing)
- Given expected high usage of DSRC and Channel Access process in 802.11p, potential exists for excessive delay for critical safety applications
- Dedication of Channel 172 was expected to assure availability for safety applications, and prevent non-safety applications from being deployed on the channel

Current Situation

- VSC Project studied channel behavior in high traffic environments (Ref: Vehicle Safety Communications Project January 7, 2005 Final Report – DTFH61-01-X-0001)
- Concern over capacity and throughput in high traffic environments remains
 - Tests indicate potential for packet loss in complex geometric situations
 - Simulations indicate significant potential for channel crowding and high latency
- Application development and in-situ testing have not yet been completed

Alliance Position on ARINC/DOT Site Registration Manager Proposal

- The Alliance supports the ARINC/USDOT proposal for a Site Registration Manager. Such a mechanism is necessary not only to ensure compliance with DSRC rules, but also to provide efficient use of the band in a complex RSU environment (e.g., busy intersections).
- The specific technical details of the ARINC/USDOT proposal for a Site Registration Manager are being studied by the Alliance members and the rest of the DSRC community.
- Early technical feedback from the Alliance has been incorporated in a supplemental filing by ARINC/USDOT on October 18, 2005.

Alliance Position on ARINC/DOT Site Registration Manager Proposal (Continued)

- The Alliance will continue its close collaboration with the USDOT in developing the Site Registration Manager approach.
- However, the Site Registration Manager approach would only help address potential congestion of Channel 172 around an RSU. It would not address channel crowding among OBUs.
- For OBUs, designation of Channel 172 for high availability, low latency applications is still regarded as the only safeguard for availability of the channel for critical safety applications.
- Furthermore, the Alliance recognizes the need to closely collaborate with the USDOT on establishing a mechanism, similar to the Site Registration Manager, to address the allocation of priority levels among all applications using the DSRC band.

Conclusion & Request

- The Commission should designate Channel 172 for highavailability, low latency safety communications without delay, to avoid future need to relocate non-safety operations that will populate the channel.
- The Commission should adopt the ARINC/DOT's Site Registration Manager Proposal
- The Commission should keep these dockets open until after the final DSRC standard (ASTM/IEEE) and message sets (SAE) are submitted and the public has been allowed to review them and provide comments.

Appendix

Supporting Information

Designated Channel Needed for Latency-Intolerant Safety Applications

- DSRC stakeholders agree on the need to designate one channel for highest priority, latency-intolerant vehicle safety applications, to ensure an interference-free environment for intensive and critical interactions in emergency situations.
 - DOT has already expressed concern about potential interference in the absence of frequency coordination (Oct. 22, 2004 ex parte)
- Key affected application is vehicle-to-vehicle communications that enable collision avoidance and mitigation (*e.g.*, pretension seat belts, prep airbags).
 - No tolerance for delay communications needed in the last 500 milliseconds before expected impact
 - Vehicle traveling at 70 MPH moves over 50 feet during this time period
- Setting aside Channel 172 for critical, latency-intolerant vehicle safety applications would better ensure the integrity of such applications than any control channel protocol approach, especially in dense traffic situations.

Unacceptable Delay Scenario

- With no designated safety channel, collision avoidance and mitigation applications could fail due to delay in communications, as illustrated by the following scenario:
 - Vehicle A calculates a likely collision with vehicle B based on current speed and trajectory.
 - Vehicle A tunes to control channel; after waiting for opportunity to transmit amidst routine status messages from other nearby vehicles, Vehicle A broadcasts instructions that Vehicle B should tune to channel 172 for high priority message.
 - Vehicle A tunes to channel 172, finds multiple low priority transmissions (e.g. video downloads) in progress, including "hidden terminal" situation (i.e., a transmitting location that cannot "hear" the priority emergency signal). Vehicle A must wait for its "turn" to transmit.
 - Vehicle A begins transmission, starting with notification of high priority status. At same instant, however, one or more "hidden terminals" begin low priority transmissions.
 Packets "collide;" no intelligible information received by any of the vehicles.
 - Vehicle A must try transmitting repeatedly until a naturally-occurring blank spot is found. Vehicles A & B need to exchange information regarding vehicle specifics and likely point of impact during approximately the last 500 milliseconds before impact. However, the latency introduced by one or more hidden transmitter situations may be more than several hundred milliseconds in a congested channel, leaving insufficient time to implement impact mitigation techniques.

Designation Needed Before Non-Safety Operations Become Entrenched

- service channels. (¶¶ 57-58) roadside units (RSU) licenses granted. Each license permits use of all R&O imposes no limit on the number of non-exclusive geographic
- control channel protocol to guarantee a uniform assignment of safety applications to an always-available channel. be Channel 172 in some locations. Thus, it will not be possible for It is contemplated that commercial and other services (provided via RSUs) will select a particular channel on which to operate, which could
- Without preserving Channel 172 for high availability and low latency precluded because all channels could become occupied by other communications, next generation critical safety applications could be services before these new safety applications are deployed
- Although these vehicle safety applications are several years off, it is not operations become entrenched. "premature" to designate the channel now, before incumbent non-safety

R&O Creates Uncertainty; Deters Introduction of DSRC Safety Applications

- Typical automotive design development cycles normally take 5-6 years, esp. for new electronic technology (e.g., DSRC) to be incorporated into vehicle electrical systems across all model lines of a vehicle manufacturer (OEM).
- OEMs need to know today the status of spectrum availability several years in the future.
- Deferred consideration of the designation of a specific channel for latency—intolerant safety applications will create uncertainty among OEMs and potentially deter or delay the incorporation of DSRC safety devices in new vehicles.

